The Impact of Artificial Intelligence and Data Mining on Crime Prevention: Opportunities and Challenges
Subject Areas : Law and new technologies
1 - Master's Degree in Criminal Law and Criminology, Licensed Attorney at Law
Keywords: Artificial Intelligence, Data Mining, Crime Prevention, Criminological Analysis, Privacy.,
Abstract :
With the emergence of new technologies in various aspects of social and economic life, crime prevention, as a key area in the field of law and criminology, has also been influenced by these developments. In this context, Artificial Intelligence (AI) and Data Mining have become advanced tools that enable the analysis of large-scale data and the identification of criminal patterns. These technologies, through complex machine learning algorithms, can process enormous amounts of data in a very short time and offer predictions based on statistical analyses of crimes, identify suspicious behaviors, and even simulate crimes. Recent advancements in AI and data mining have led to significant transformations in the way crime prevention is approached. One important application of these technologies is their use in predicting and simulating crime occurrences in specific areas or based on behavioral patterns. Specifically, these technologies help judicial and law enforcement authorities identify areas more prone to crime and adopt more effective preventive measures based on data analysis. However, the use of these technologies comes with various legal and ethical challenges. One of the most significant concerns is privacy, as the processing of personal data and smart surveillance can lead to violations of individual rights and personal freedoms. Additionally, algorithmic biases may result in unfair and discriminatory decisions against certain social, racial, or gender groups. Alongside these issues, the criminal liability of AI decisions is also a complex legal matter. In the event of errors by intelligent systems, it must be determined who or which entity is responsible for these mistakes.
موسوی، حسن؛ عبداللهی، رضا؛ و کیانی، محمود. (۱۴۰۰). "هوش مصنوعی و پیشگیری از جرم: چالشها و فرصتها." فصلنامه مطالعات جرمشناسی. ۱۰(۳)، ۱۱۵-۱۳۰.
جلیلیان، حمید؛ نیکوکار، سارا؛ و محمودی، علیرضا. (۱۳۹۹). "تاثیر دادهکاوی در کاهش جرایم جنسی: یک بررسی تجربی." مجله حقوق جزا. ۲۲(۴)، ۵۲-۶۹.
یوسفی، امیر؛ و تاجیک، محسن. (۱۳۹۹). "کاربرد الگوریتمهای هوش مصنوعی در تجزیه و تحلیل جرایم اقتصادی." مجله تحقیقات جرمشناسی و امنیت. ۳۱(۲)، ۴۵-۶۰.
رحمانی، بهزاد؛ و خسروی، علیرضا. (۱۳۹۸). "پیشگیری از جرم از طریق دادهکاوی: یک رویکرد نوین." فصلنامه سیاستهای کیفری. ۱۸(۱)، ۲۲-۳۷.
عسگری، حسین؛ و مرادی، سجاد. (۱۴۰۰). "نقش فناوریهای نوین در کاهش جرایم سازمانیافته." مجله مطالعات امنیتی و اجتماعی. ۱۴(۲)، ۸۲-۹۶.
Koper, C. S. (2018). The Role of Predictive Policing in Crime Prevention. Journal of Criminal Justice, 57, 12-22.
Perry, W. L., McInnis, B., Price, C. C., & Smith, S. A. (2013). Predictive Policing: The Role of Crime Forecasting in Law Enforcement Operations. RAND Corporation.
Chawla, N. V., Lazarevic, A., & Oza, N. (2002). Data Mining for Crime Investigation: A Case Study of Crime Prediction. IEEE Transactions on Knowledge and Data Engineering, 14(6), 1304-1318.
Tan, P. N., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining. Pearson Education.
O'Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing.
Binns, R. (2018). Transparency in AI: Ethical Considerations. AI & Ethics Journal, 3(2), 25-38.
Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press.
Zwitter, A. (2014). Big Data Ethics. Big Data & Society, 1(2), 2053951714535773.
References
Mousavi, Hassan, Abdollahi, Reza, & Kiani, Mahmoud. (1400 SH). “Hosh-e masnūʿī va pīshgīrī az jorm: chālesh-hā va forsat-hā” [Artificial Intelligence and Crime Prevention: Challenges and Opportunities]. Faslnāmeh-ye Moṭāleʿāt-e Jorm-shenāsī [Criminology Studies Quarterly], 10(3), 115–130. [in Persian]
Jalilian, Hamid, Nikoukar, Sara, & Mahmoudi, Alireza. (1399 SH). “Taʾsīr-e dāde-kāvī dar kahesh-e jarāem-e jensī: yek barrasī-ye tajrobī” [The Impact of Data Mining on Reducing Sexual Offences: An Empirical Study]. Majalle-ye Ḥoqūq-e Jezā [Criminal Law Journal], 22(4), 52–69. [in Persian]
Yousefi, Amir, & Tajik, Mohsen. (1399 SH). “Kārbord-e algūritm-hā-ye hosh-e masnūʿī dar tajziye va taḥlīl-e jarāem-e eqteṣādī” [Application of Artificial Intelligence Algorithms in the Analysis of Economic Crimes]. Majalle-ye Taḥqīqāt-e Jorm-shenāsī va Amniyat [Journal of Criminology and Security Research], 31(2), 45–60. [in Persian]
Rahmani, Behzad, & Khosravi, Alireza. (1398 SH). “Pīshgīrī az jorm az ṭarīq-e dāde-kāvī: yek ruykard-e novīn” [Crime Prevention through Data Mining: A New Approach]. Faslnāmeh-ye Siyasat-hā-ye Keyfarī [Quarterly of Criminal Policies], 18(1), 22–37. [in Persian]
Asgari, Hossein, & Moradi, Sajad. (1400 SH). “Naqsh-e fanāvarī-hā-ye novīn dar kahesh-e jarāem-e sāzmān-yāfteh” [The Role of New Technologies in Reducing Organized Crime]. Majalle-ye Moṭāleʿāt-e Amniyatī va Ejtemāʿī [Journal of Security and Social Studies], 14(2), 82–96. [in Persian]
Koper, C. S. (2018). The Role of Predictive Policing in Crime Prevention. Journal of Criminal Justice, 57, 12–22.
Perry, W. L., McInnis, B., Price, C. C., & Smith, S. A. (2013). Predictive Policing: The Role of Crime Forecasting in Law Enforcement Operations. RAND Corporation.
Chawla, N. V., Lazarevic, A., & Oza, N. (2002). Data Mining for Crime Investigation: A Case Study of Crime Prediction. IEEE Transactions on Knowledge and Data Engineering, 14(6), 1304–1318.
Tan, P. N., Steinbach, M., & Kumar, V. (2013). Introduction to Data Mining. Pearson Education.
O'Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing.
Binns, R. (2018). Transparency in AI: Ethical Considerations. AI & Ethics, 3(2), 25–38.
Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press.
Zwitter, A. (2014). Big Data Ethics. Big Data & Society 1(2), 2053951714535773.