ارائه مدلی برای پیش بینی بقای بیماران مبتلا به ملانوم بر اساس الگوریتم های داده کاوی
محورهای موضوعی : فناوری اطلاعات و ارتباطات
فریناز صناعی
1
,
سید عبدالله امین موسوی
2
,
عباس طلوعی اشلقی
3
,
علی رجب زاده قطری
4
1 - دانشجوی دکتری رشته مدیریت فناوری اطلاعات،گرایش کسب کار هوشمند ، گروه مدیریت فناوری اطلاعات ،دانشکده مدیریت واقتصاد، واحد علوم تحقیقات، دانشگاه آزاد اسلامی،تهران ،ایران
2 - عضو هیات علمی( استادیار) ،گروه مدیریت صنعتی ، دانشکده مدیریت ، واحد تهران مرکز، دانشگاه آزاد اسلامی،تهران،ایران
3 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات
4 - Tarbiat Modarres University
کلید واژه: داده کاوي, پیش بیني, ملانوم, بقاي بیماري, شبکه عصبي, درخت تصمیم گیري,
چکیده مقاله :
مقدمه: ملانوم جزء شایعترین سرطان تشخیصي و دومین علت مرگ ناشي از سرطان در میان افراد است. تعداد مبتلایان به آن در حال افزایش است. ملانوم، نادرترین و بدخیم ترین نوع سرطان پوست است.در شرایط پیشرفته توانایي انتشار به ارگانهاي داخلي را دارد و ميتواند منجر به مرگ شود. طبق برآوردهاي انجمن سرطان آمریکا براي ملانوم در ایالاتمتحده براي سال 2022 عبارتاند از: حدود 99،780 ز افراد مبتلابه ملانوم تشخیص داده شدند و حدود 7،650 نفر در اثر ملانوم جان خود را از دست ميدهند. لذا هدف از این مطالعه، طراحي بهبود دقت الگوریتم براي پیش بیني بقاي این بیماران است. روش پژوهش: روش حاضر کاربردي، توصیفي- تحلیلي و گذشتهنگر است. جامعه پژوهش را بیماران مبتلابه سرطان ملانوم پایگاه داده مرکز تحقیقات کشوري سرطان دانشگاه شهید بهشتي ) 1۳87 تا 1۳91 ( که تا 5 سال مورد پیگیري قرارگرفته بودند، تشکیل داده است. مدل پیشبیني بقاي ملانوم بر اساس شاخص هاي ارزیابي الگوریتم هاي داده کاوي انتخاب شد. یافته ها: الگوریتم هاي شبکه عصبي، بیز ساده، شبکه بیزي، ترکیب درخت تصمیم گیري با بیز ساده، رگرسیون لجستیک، J48 ، ID3 بهعنوان مدل هاي استفاده شده ي پایگاه داده کشور انتخاب شدند . عملکرد شبکه عصبي در همه شاخصهاي ارزیابي ازلحاظ آماري نسبت به سایر الگوریتم هاي منتخب بالاتر بود. نتیجه گیري: نتایج مطالعه حاضر نشان داد که شبکه عصبي با مقدار 97 / 0 ازلحاظ دقت پیش بیني عملکرد بهینه دارد. بنابراین مدل پیش بیني کننده بقاي ملانوم، هم ازلحاظ قدرت تمایز و هم ازلحاظ پایایي، عملکرد بهتري از خود نشان داد؛ بنابراین، این الگوریتم به عنوان مدل پیش بیني بقاي ملانوم پیشنهاد شد
Background/Purpose: Among the most commonly diagnosed cancers, melanoma is the second leading cause of cancer-related death. A growing number of people are becoming victims of melanoma. Melanoma is also the most malignant and rare form of skin cancer. Advanced cases of the disease may cause death due to the spread of the disease to internal organs. The National Cancer Institute reported that approximately 99,780 people were diagnosed with melanoma in 2022, and approximately 7,650 died. Therefore, this study aims to develop an optimization algorithm for predicting melanoma patients' survival. Methodology: This applied research was a descriptive-analytical and retrospective study. The study population included patients with melanoma cancer identified from the National Cancer Research Center at Shahid Beheshti University between 2008 and 2013, with a follow-up period of five years. An optimization model was selected for melanoma survival prognosis based on the evaluation metrics of data mining algorithms. Findings: A neural network algorithm, a Naïve Bayes network, a Bayesian network, a combination of decision tree and Naïve Bayes network, logistic regression, J48, and ID3 were selected as the models used in the national database. Statistically, the studied neural network outperformed other selected algorithms in all evaluation metrics. Conclusion: The results of the present study showed that the neural network with a value of 0.97 has optimal performance in terms of reliability. Therefore, the predictive model of melanoma survival showed a better performance both in terms of discrimination power and reliability. Therefore, this algorithm was proposed as a melanoma survival prediction model.