پیشبینی مکانی- زمانی تغییرات پوشش گیاهی بر مبنای دادههای سنجش از دور با استفاده از یادگیری عمیق
محورهای موضوعی : electrical and computer engineering
الهام زنگنه
1
,
هدی مشایخی
2
,
سعید قره چلو
3
1 - دانشگاه صنعتی شاهرود
2 - دانشگاه صنعتی شاهرود
3 - دانشگاه صنعتی شاهرود
کلید واژه: یادگیری عمیق, سری زمانی, سنجش از دور, شاخص پوشش گیاهی, مدلسازی توالی,
چکیده مقاله :
درک و تحلیل تغییرات دادههای مکانی- زمانی در کاربردهای مختلف از جمله انجام اقدامات حفاظت و توسعه منابع طبیعی اهمیت زیادی دارد. در مطالعات گذشته، عمدتاً از فرایند مارکوف و روشهای مبتنی بر مقایسه جهت پیشبینی تغییرات شاخصهای پوشش گیاهی استفاده گردیده که دقت آنها همچنان جای بهبود دارد. گرچه تحلیلهای سری زمانی برای پیشبینی معدودی از شاخصها مورد استفاده قرار گرفته است، اما روشی که این شاخصها را از دادههای سنجش از دور استخراج کرده و مدلسازی توالی آنها را با یادگیری عمیق انجام دهد، به ندرت مشاهده میشود. در این مقاله، روشی برای پیشبینی تغییرات شاخصهای گیاهی مبتنی بر یادگیری عمیق ارائه میشود. دادههای پژوهش شامل تصاویر ماهوارهای لندست از سال ۲۰۰۰ تا ۲۰۱۸، مربوط به چهار فصل سال در نواحی شمال و شرق شهرستان شاهرود در استان سمنان میباشند. گستره زمانی تصاویر استخراجشده، امکان پیشبینی تغییرات پوشش گیاهی را ممکن میسازند. شاخصهای پوشش گیاهی استخراجشده از مجموعه داده، شامل NDVI، RVI و SAVI هستند. پس از انجام اصلاحات اتمسفری روی تصاویر، شاخصهای مورد نظر استخراج شده و سپس دادهها به سری زمانی تبدیل میشوند. نهایتاً مدلسازی توالی این دادهها توسط شبکه حافظه کوتاه- بلندمدت انجام میشود. نتایج حاصل از آزمایشها نشان میدهند که شبکه عصبی قادر به پیشبینی مقادیر آینده با دقت بالا است. میزان خطای شبکه بدون وجود دادههای اضافی برای شاخص NDVI برابر 03/0، شاخص SAVI برابر با 02/0 و شاخص RVI برابر با 06/0 گزارش میشود.
Understanding and analyzing spatial-temporal data changes is very important in various applications, including the protection and development of natural resources. In the past studies, Markov process and comparison-based methods were mainly used to predict the changes of vegetation indices, whose accuracy still needs improvement. Although time series analysis has been used to predict some indices, the method to extract these indices from remote sensing data and model their sequences with deep learning is rarely observed. In this article, a method for predicting changes in plant indices based on deep learning is presented. The research data includes Landsat satellite images from 2000 to 2018, related to four seasons in the north and east of Shahrood city in Semnan province. The time span of the extracted images makes it possible to predict changes in vegetation cover. Vegetation indices extracted from the data set are NDVI, SAVI and RVI. After performing atmospheric corrections on the images, the desired indicators are extracted and then the data is converted into a time series. Finally, the modeling of the sequence of these data is performed by the Short-Long-Term Memory (LSTM) network. The results of the experiments show that the deep network is able to predict future values with high accuracy. The amount of the model error without additional data is 0.03 for the NDVI index, 0.02 for the SAVI index, and 0.06 for the RVI index.