استخراج و مدلسازي واحدهاي آوايي وابسته به بافت براي بهبود دقت بازشناسي گفتار پيوسته با روش دستهبندي واجها
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشگاه صنعتی شریف
2 - دانشگاه صنعتی شریف
کلید واژه: بازشناسي گفتار پيوستهدستهبنديمدل مخفي مارکوفمدلهاي وابسته به بافت,
چکیده مقاله :
در اين مقاله براي بهبود دقت يک سيستم بازشناسي گفتار پيوسته فارسي، روش وابسته به بافت مناسبي پيشنهاد شده است. به دليل بعضي محدوديتهاي موجود در سيستم بازشناسي، از ايدة واحدهاي آوايي چندگانه براي استخراج واحدهاي آوايي وابسته به بافت استفاده گرديده است. بر اساس اين ايده هر واج به چند نوع گوناگون دستهبندي ميشود و هر دسته جداگانه مدلسازي ميگردد. دستهبندي واجها به صورت بينظارت و با استفاده از الگوريتم k-means انجام شده است و براي محاسبه مركز دستهها روش كارايي پيشنهاد شده است. تعداد دسته مناسب براي هر واج با توجه به حجم دادههاي آموزشي آن واج و دقت بازشناسي واج در هنگام بهکارگيري مدلهاي مستقل از بافت، حدس زده شده و سپس با روشهاي مبتني بر سعي و خطا، تعداد دسته بهينه براي هر واج تعيين شده است. سپس هر دسته به عنوان يک واحد آوايي وابسته به بافت مدلسازي گرديده است. با استفاده از اين مدلها حدود 22 درصد کاهش در نرخ خطاي کلمات حاصل شده است.
This paper proposes a proper context dependent method for improving the accuracy of a Persian continuous speech recognition system. Due to some constraints in speech recognition system, the multiple phone units approach is utilized for extracting context dependent phone units. In this approach, each phoneme is clustered to some phoneme variations, and then each phoneme variation is modeled separately. Unsupervised phoneme clustering is done using k-means clustering algorithm. The new effective method is proposed for calculating the centroid of clusters. The proper number of cluster for each phoneme is determined according to amount of training data for that phoneme and recognition accuracy of that phoneme using context independent models. The number of clusters is then optimized by try and error methods. Then each cluster is modeled as a context dependent phone unit. The reduction in word error rate is about 22% using these models.