تحلیل یادگیری دانش آموزان از طریق ورزش صبحگاهی با استفاده از روش های داده کاوی
محورهای موضوعی :
1 - استادیار گروه فناوری اطلاعات و ارتباطات، دانشگاه علوم انتظامی امین
2 - دانشکده مهندسی برق-کامپیوتر، دانشگاه غیر انتفاعی آل طه
کلید واژه: ورزش صبحگاهی¬, یادگیری¬ دانش¬آموزان, انتخاب ویژگی, طبقه¬بندی.,
چکیده مقاله :
یکی از عوامل اصلی فرایند جامعه پذیری، مدرسه است که اهمیت آن در نظام آموزشی هر کشوری بیش از پیش احساس می شود. ارتقاء سطح یادگیری دانش آموزان، یک عامل مهم برای ارتقای کیفیت نظام آموزش در مدارس، می باشد. از آنجایی که ورزش کردن ثاثیر بسزایی در یادگیری دارد، هدف اصلی مقاله ارائه روشی جهت تقویت روند یادگیری دانش آموزان از طریق ورزش صبحگاهی مبتنی بر تکنیک شبکه عصبی و الگوریتم بهینه سازی قطرات هوشمند آب است. رویکرد این پژوهش به صورت کمی بوده و از نظر هدف كاربردي و همچنین از نظر نوع روش، توصيفي- تحليلي است. جهت دستیابی به این هدف از تکنیک شبکه عصبی به منظور طبقهبندی و استخراج نتایج و از الگوریتم بهینه سازی قطرات هوشمند آب جهت انتخاب ویژگی استفاده می شود. برای شبکه عصبی از 11 نورون به عنوان تعداد نورون مناسب لایه مخفی و ترکیب دو تابع فعال سازي خطي و سيگموئيدي به عنوان توابع انتقال بین لایهای و از یک تابع آموزش جهت آموزش شبکه و حداکثر تکرار الگوریتم آموزش بر روی مجموعه داده 3000 تعداد، پیشنهاد شده است. دقت روش پیشنهادی 68 درصد است که به نسبت روش پایه حدود 2/2 درصد بهبود داشته و این یعنی ورزش برروی یادگیری دانشآموزان تاثیر دارد. نتایج نشان داد طبقه بندی بهینه روی مجموعه داده با پارامترهای همگن، عملکرد مناسبی داشته و همچنین شبکههای عصبی مصنوعی نسبت به روش های جدید ، عملکرد بهتری دارد. طبق نتایج به دست آمده روش پیشنهادی از نظر صحت خروجی می تواند بهبود مناسبی در تقویت روند یادگیری داشته باشد.
Since school has identified as one of the major agents in the socialization process, it has found remarkable position in the educational system of any country. Improving student learning is also a key factor to enhance the educational system quality in schools. As regular exercise has profoundly positive impact on learning, this paper mainly aims to provide an approach to enhance students' learning process through morning exercise based on artificial neural network (ANN) technique and intelligent water drop optimization algorithm. This study is a quantitative research, which is purposefully a descriptive-analytical and methodologically a practical study. To that end, ANN technique was used to classify and extract the results, as well as, intelligent water drop optimization algorithm was employed for feature selection. In ANN, eleven neurons were selected as the appropriate number of hidden layer neurons; a combination of two linear and sigmoidal activation functions were employed as interlayer transmission functions; a training function was applied to train the network; and a maximum 3000 duplicates was proposed for the training algorithm on dataset. The accuracy of the proposed method was 68%, which has improved by about 2.2% compared to the basic method, i.e., exercise has a positive effect on students' learning. The results showed a proper performance of the optimal classification on the dataset with homogeneous parameters as well as a better performance of the artificial neural networks than the novel methods. Accordingly, the proposed method can have an appropriate improvement in terms of output accuracy in strengthening the learning process.