مقایسه روش¬های طبقه¬بندی ماشین بردار پشتیبان و حداکثر احتمال برای تفکیک واحدهای دگرسانی منطقه تخت گنبد
محورهای موضوعی :داود نظری 1 , ندا ماهوش محمدی 2 , محمدحسین آدابی 3 , اردشیر هزارخانی 4 , محمد قویدل سیوکی 5 , هانیه کلانی 6
1 - دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
2 - دانشگاه امیرکبیر
3 -
4 - دانشگاه صنعتی امیرکبیر
5 -
6 - دبیر آموزش و پرورش
کلید واژه: دگرسانی ماشین بردار پشتیبان حداکثر احتمال سنجش از راه دور استر ,
چکیده مقاله :
تفکیک واحد های دگرسانی، برای بسیاری از فعالیت های معدنی از جمله اکتشاف کانسارها، دارای اهمیت می-باشد. در گذشته از روش های رایج کلاسیک بدین منظور استفاده می شد اما امروزه روش ماشین بردار پشتیبان (SVM) که یکی از مهمترین مدل های داده کاوی است بسیار مورد استفاده قرار گرفته است. این مدل براساس نظریه یادگیری آماری می باشد. در پژوهش حاضر، روش ماشین بردار پشتیبان (SVM) و کرنل های مختلف آن با روش حداکثر احتمال بهمنظور تفکیک واحد های دگرسانی مواد معدنی منطقه تخت گنبد با استفاده از تصاویر ماهواره ای سنجنده ASTER مورد تحلیل و ارزیابی قرار گرفت. نتایج بهدستآمده نشان داد که روش SVM با تابع کرنل RBF نسبت به سایر کرنل ها و روش حداکثر احتمال، بیشترین دقت (17/89 درصد) و ضریب کاپا (83/0) را دارا می باشد. ارزیابی نتایج بهدستآمده و مطالعات صحرایی گویای این حقیقت است که روش SVM در طبقه بندی دگرسانی هایی با تفکیک پایین تر در منطقه مورد مطالعه بسیار کارآمدتر از روش های مورد بحث دیگر بوده است.
Separation of alteration units has an important role in exploration of ore deposits. In the past, classical methods were used for this purpose. Recently, the support vector machine (SVM), one of the most important data driven models, has been applied for geological purpose. This algorithm is a useful learning system based on constrained optimization theory. In this study, the SVM algorithm with various kernels and maximum likelihood method were used to separate the alteration units of the Takht-e-Gonbad district situated in Chahar Gonbad sheet by using satellite images of the ASTER sensor. The results were analyzed and evaluated according to the field studies. Based on the achieved results and field studies, the SVM method with the RBF kernel function compared to other kernels and the maximum likelihood method had the highest accuracy (89.17%) and kappa coefficient (0.83). Thus, the SVM method for classification of alteration is more accurate compared to other discussed methods.