تشخیص خودکار بیماری های ریوی با استفاده از ویژگی های مبتنی بر تبدیل کسینوسی گسسته در تصاویر رادیوگرافی
محورهای موضوعی : فناوری اطلاعات و ارتباطات
1 - دانشگاه محقق اردبیلی
2 - دانشگاه محقق اردبیلی
کلید واژه: آنالیز تشخیصي حساس به مکان, تبدیل کسینوسي گسسته, تبدیل موجک گسسته, تشخیص بیماريهاي ریوي بینابیني, تصاویر رادیوگرافي, درخت تصمیم,
چکیده مقاله :
استفاده از نتایج خام رادیوگرافي در تشخیص بیماريهاي ریوي عملکرد قابلقبولي ندارد. یادگیري ماشین ميتواند به تشخیص دقیقتر بیماريها کمک کند. مطالعات گستردهاي در حوزه تشخیص خودکار بیماريها با کمک یادگیري ماشین کلاسیک و عمیق انجام شده؛ اما این روشها دقت و کارایي قابلقبولي ندارند یا به دادههاي یادگیري زیادي نیاز دارند. براي مقابله با این چالشها، در این مقاله، روش جدیدي براي تشخیص خودکار بیماريهاي ریوي بینابیني در تصاویر رادیوگرافي ارائه ميشود. در گام اول، اطلاعات بیمار از تصاویر حذف شده؛ سپس، پیکسلهاي باقیمانده، جهت پردازشهاي دقیقتر، استانداردسازي ميشوند. در گام دوم، پایایي روش پیشنهادي با کمک تبدیل رادان بهبود یافته، دادههاي اضافي با استفاده از فیلتر Top-hat حذف شده و نرخ تشخیص با بهرهبرداري از تبدیل موجک گسسته و تبدیل کسینوسي گسسته افزایش ميیابد. سپس، تعداد ویژگيهاي نهایي با کمک آنالیز تشخیصي حساس به مکان کاهش ميیابد. در گام سوم، تصاویر پردازششده به دو دسته یادگیري و تست تقسیم ميشوند؛ با استفاده از دادههاي یادگیري، مدلهاي مختلفي ایجاد شده و با کمک دادههاي تست، بهترین مدل انتخاب ميشود. نتایج شبیهسازيها بر روي مجموعه داده NIH نشان ميدهد که روش پیشنهادي مبتني بر درخت تصمیم با بهبود میانگین هارمونیک حساسیت و صحت تا 08 / 1 برابر، دقیقترین مدل را ارائه ميدهد.
The use of raw radiography results in lung disease identification has not acceptable performance. Machine learning can help identify diseases more accurately. Extensive studies were performed in classical and deep learning-based disease identification, but these methods do not have acceptable accuracy and efficiency or require high learning data. In this paper, a new method is presented for automatic interstitial lung disease identification on radiography images to address these challenges. In the first step, patient information is removed from the images; the remaining pixels are standardized for more precise processing. In the second step, the reliability of the proposed method is improved by Radon transform, extra data is removed using the Top-hat filter, and the detection rate is increased by Discrete Wavelet Transform and Discrete Cosine Transform. Then, the number of final features is reduced with Locality Sensitive Discriminant Analysis. The processed images are divided into learning and test categories in the third step to create different models using learning data. Finally, the best model is selected using test data. Simulation results on the NIH dataset show that the decision tree provides the most accurate model by improving the harmonic mean of sensitivity and accuracy by up to 1.09times compared to similar approaches.