ساخت مجموعه داده تصاویر برای تشخیص و بازشناسی متن در تصاویر
محورهای موضوعی : فناوری اطلاعات و ارتباطات
فاطمه علی مرادی
1
,
فرزانه رحمانی
2
,
لیلا ربیعی
3
,
محمد خوانساری
4
,
مجتبی مازوچی
5
1 - پژوهشگر پژوهشگاه ارتباطات و فناوری اطلاعات
2 - پژوهشگر پژوهشگاه ارتباطات و فناوری اطلاعات
3 - پژوهشگر پژوهشگاه ارتباطات و فناوری اطلاعات
4 - دانشگاه تهران
5 - پژوهشگاه ارتباطات و فناوری اطلاعات
کلید واژه: تشخیص متن, بازشناسی متن, تصاویر متن منظره, مجموعه داده متن منظره فارسی, یادگیری عمیق,
چکیده مقاله :
تشخیص متن در تصاویر از مهم ترین منابع تحلیل محتوای تصاویر است. گرچه در زبان هایی همچون انگلیسی و چینی، تحقیقاتی در زمینه تشخیص و بازشناسی متن و ارائه مدله ای انتها به انتها (مدل هایی که تشخیص و بازشناسی در یک مدل واحد ارائه می شود) مبتنی بر یادگیری عمیق انجام شده است، اما برای زبان فارسی مانعی بسیار جدی برای توسعه چنین مدلهایی وجود دارد. این مانع، نبود مجموعه داده آموزشی با تعداد بالا برای مدلهای مبتنی بر یادگیری عمیق است. در این مقاله، ما ابزارهای لازم برای ساخت مجموعه داده تصاویر متن منظره با پارامترهایی همچون رنگ، اندازه، فونت و چرخش متن طراحی و ایجاد می کنیم. از این ابزارها برای تامین داده بزرگ و متنوع برای آموزش مدل های مبتنی بر یادگیری عمیق استفاده می شود. به کمک این ابزارها و تنوع تصاویر ساخته شده، مدل ها به نوع خاصی از این پارامترها وابسته نمی شوند و سبب جامعیت مدل ها می شود. 7603 تصویر متن منظره و 39660 تصویر کلمات بریده شده، ساخته شده است. مزیت روش ما نسبت به تصاویر واقعی، ساخت تصاویر به تعداد دلخواه و بدون نیاز به حاشیه نویسی دستی می باشد. طبق بررسی ما، این اولین مجموعه داده تصاویر متن منظره فارسی به صورت آزاد و با تعداد بالا است.
Text detection in images is one of the most important sources for image recognition. Although many researches have been conducted on text detection and recognition and end-to-end models (models that provide detection and recognition in a single model) based on deep learning for languages such as English and Chinese, the main obstacle for developing such models for Persian language is the lack of a large training data set. In this paper, we design and build required tools for synthesizing a data set of scene text images with parameters such as color, size, font, and text rotation for Persian. These tools are used to generate a large still varied data set for training deep learning models. Due to considerations in synthesizing tools and resulted variety of texts, models do not depend on synthesis parameters and can be generalized. 7603 scene text images and 39660 cropped word images are synthesized as sample data set. The advantage of our method over real images is to synthesize any arbitrary number of images, without the need for manual annotations. As far as we know, this is the first open-source and large data set of scene text images for Persian language.