انتخاب ویژگی چندبرچسبه با استفاده از راهکار ترکیبی مبتنی بر الگوریتم بهینهسازی ازدحام ذرات
محورهای موضوعی : مهندسی برق و کامپیوترآذر رفیعی 1 , پرهام مرادی 2 , عبدالباقی قادرزاده 3
1 - دانشگاه آزاد اسلامی واحد سنندج
2 - دانشگاه کردستان
3 - دانشگاه آزاد اسلامی واحد سنندج
کلید واژه: انتخاب ویژگی, طبقهبندی چندبرچسبی, استراتژی جستجوی محلی, هوش جمعی, بهینهسازی ازدحام ذرات,
چکیده مقاله :
طبقهبندی چندبرچسبی یکی از مسائل مهم در یادگیری ماشین است که کارایی الگوریتمهای این طبقهبندی با افزایش ابعاد مسأله به شدت کاهش مییابد. انتخاب ویژگی، یکی از راهکارهای اصلی برای کاهش ابعاد در مسائل چندبرچسبی است. انتخاب ویژگی چندبرچسبی یک راهکار NP Hard است و تا کنون تعدادی راهکار مبتنی بر هوش جمعی و الگوریتمهای تکاملی برای آن ارائه شده است. افزایش ابعاد مسأله منجر به افزایش فضای جستجو و به تبع، کاهش کارایی و همچنین کاهش سرعت همگرایی این الگوریتمها میشود. در این مقاله یک راهکار هوش جمعی ترکیبی مبتنی الگوریتم دودویی بهینهسازی ازدحام ذرات و استراتژی جستجوی محلی برای انتخاب ویژگی چندبرچسبی ارائه شده است. برای افزایش سرعت همگرایی، در استراتژی جستجوی محلی، ویژگیها بر اساس میزان افزونهبودن و میزان ارتباط با خروجی مسأله به دو دسته تقسیمبندی میشوند. دسته اول را ویژگیهایی تشکیل میدهند که شباهت زیادی به کلاس مسأله و شباهت کمتری به سایر ویژگیها دارند و دسته دوم هم ویژگیهای افزونه و کمتر مرتبط است. بر این اساس، یک اپراتور محلی به الگوریتم بهینهسازی ازدحام ذرات اضافه شده که منجر به کاهش ویژگیهای غیر مرتبط و افزونه هر جواب میشود. اعمال این اپراتور منجر به افزایش سرعت همگرایی الگوریتم پیشنهادی در مقایسه با سایر الگوریتمهای ارائهشده در این زمینه میشود. عملکرد روش پیشنهادی با شناختهشدهترین روشهای انتخاب ویژگی، بر روی مجموعه دادههای مختلف مقایسه گردیده است. نتایج آزمایشها نشان دادند که روش پیشنهادی از نظر دقت، دارای عملکردی مناسب است.
Multi-label classification is one of the important issues in machine learning. The efficiency of multi-label classification algorithms decreases drastically with increasing problem dimensions. Feature selection is one of the main solutions for dimension reduction in multi-label problems. Multi-label feature selection is one of the NP solutions, and so far, a number of solutions based on collective intelligence and evolutionary algorithms have been proposed for it. Increasing the dimensions of the problem leads to an increase in the search space and consequently to a decrease in efficiency and also a decrease in the speed of convergence of these algorithms. In this paper, a hybrid collective intelligence solution based on a binary particle swarm optimization algorithm and local search strategy for multi-label feature selection is presented. To increase the speed of convergence, in the local search strategy, the features are divided into two categories based on the degree of extension and the degree of connection with the output of the problem. The first category consists of features that are very similar to the problem class and less similar to other features, and the second category is similar features and less related. Therefore, a local operator is added to the particle swarm optimization algorithm, which leads to the reduction of irrelevant features and extensions of each solution. Applying this operator leads to an increase in the convergence speed of the proposed algorithm compared to other algorithms presented in this field. The performance of the proposed method has been compared with the most well-known feature selection methods on different datasets. The results of the experiments showed that the proposed method has a good performance in terms of accuracy.