تشخیص ناهنجاری در مسیرخودرو با استفاده از از آموزش لغت نامه و بازسازی تنک
محورهای موضوعی : electrical and computer engineeringریحانه تقی زاده خانکوک 1 , عباس ابراهیمی مقدم 2 , مرتضی خادمی 3
1 - دانشگاه فردوسی،دانشکده مهندسی
2 - دانشگاه فردوسی،دانشکده مهندسی
3 - دانشگاه فردوسی،دانشکده مهندسی
کلید واژه: آموزش لغتنامه, استخراج ویژگی, بازسازی تنک تشخیص ناهنجاری,
چکیده مقاله :
در سامانههای کنترل ترافیک و ثبت تخلفات وسایل نقلیه همواره دستیابی به سامانهای که بتوان با استفاده از آن به طور خودکار رفتارهای ناهنجار رانندگان را شناسایی کرد، چالشی اساسی به شمار میآید. در این تحقیق سامانهای با مشخصات مذکور برای تشخیص ناهنجاری مسیر خودروها پیشنهاد گردیده که در آن ابتدا به استخراج ویژگیهای زمانی- مکانی و تشکیل یک طبقهبند با کمک لغتنامه حاصل از آن ویژگیها پرداخته میشود. طبقهبند از پردازشهایی چون خوشهبندی بهینهشده با الگوریتم جفتگیری زنبور عسل و پردازش تنک روی ویژگیهای زمانی- مکانی حاصل از دادههای آموزشی تشکیل میگردد. طبقهبند طراحیشده روی دادههای آزمون، به منظور تشخیص ناهنجاری اعمال میشود. وجه تمایز این پژوهش نسبت به پژوهشهای پیشین علاوه بر شیوه نوین در پیشپردازش صورتگرفته به منظور ایجاد ماتریس لغتنامه، تشخیص ناهنجاری بر پایه ارزیابی ماتریس حاصل از تعلق دادهها به هر طبقه است که منجر به دقت بالاتر روش پیشنهادی نسبت به سایر روشهای رقیب میشود. برای ارزیابی بهتر روش پیشنهادی، ابتدا آن را روی پایگاه داده UCSD و سپس روی دنبالههای ویدئویی استخراجشده از عبور و مرور خودروها در ضلع شمالی دانشگاه فردوسی مشهد اعمال نموده و سپس نتایج حاصل، با نتایج سایر پژوهشهای شناختهشده در این حوزه مقایسه میگردد.
In traffic control and vehicle registration systems a big challenge is achieving a system that automatically detects abnormal driving behavior. In this paper a system for detection of vehicle anomalies proposed, which at first extracts spatio-temporal features form clusters then creates dictionary from these features. This classification stage consists of processes such as, optimized clustering with the bee mating algorithm and sparse processing on spatiotemporal features derived from the training data. Finally the trained classifier is applied to the test data for anomaly detection. The distinction of this study from previous research is using new method of pre-processing to create a dictionary matrix and anomaly detection based on evaluation of matrix that related to each class dependency, which leads to higher accuracy of the proposed method compared to other leading methods. To evaluate the proposed method, UCSD database and video sequences recorded from vehicle traffic on Vakilabad Boulevard at the north side of Ferdowsi University of Mashhad are used and the performance of the proposed method is compare to other competing methods in this field. By analyzing the evaluation standards, we find that the proposed method performance is better than other methods.