کاهش ابعاد روش پنهانشکنی CDF با استفاده از یک روش انتخاب ویژگی مبتنی بر تئوری گراف
محورهای موضوعی : مهندسی برق و کامپیوتر
سعید آزادیفر
1
,
سیدحسین خواسته
2
,
محمدهادی ادریسی
3
1 - دانشگاه صنعتی خواجه نصیرالدین طوسی
2 - دانشگاه صنعتی خواجه نصیرالدین طوسی
3 - دانشگاه اصفهان
کلید واژه: پنهانشکنیپنهاننگاریانتخاب ویژگیکاهش بعد,
چکیده مقاله :
پنهانشکنی دانش کشف حضور داده پنهان در یک رسانه پوششی است. هدف پنهانشکنی جلوگیری از رسیدن روشهای پنهاننگاری به اهداف خود میباشد. یکی از معروفترین روشهای پنهانشکنی روش CDF است که در این پژوهش استفاده شده است. یکی از چالشهای عمده در مسئله پنهانشکنی تصاویر تعداد زیاد ویژگیهای استخراجشده برای این کار است. مجموعههای دادهای با ابعاد بالا از دو جهت باعث کاهش عملکرد پنهانشکنی میشود. از یک طرف با افزایش ابعاد دادهها، حجم محاسبات افزایش پیدا میکند و از طرف دیگر مدلی که بر اساس دادههای با ابعاد بالا ساخته میشود دارای قابلیت تعمیم پایینی است و احتمال بیشبرازش افزایش مییابد. در نتیجه، کاهش ابعاد مسئله میتواند هم پیچیدگی محاسباتی را کاهش داده و هم باعث بهبود عملکرد پنهانشکنی شود. در این مقاله تلاش شده با ترکیب مفهوم زیرگراف کامل بیشینه وزندار و معیار مرکزیت یال و در نظر گرفتن مناسببودن هر ویژگی، ویژگیهای تأثیرگذار و دارای حداقل افزونگی بهعنوان ویژگیهای نهایی انتخاب شوند. نتایج شبیهسازی بر روی مجموعه دادههای SPAM و CC-PEV نشان داد روش پیشنهادی دارای عملکرد مناسبی است و به دقت حدود 96% در تشخیص جاسازی داده در تصاویر دست پیدا کرده و همچنین این روش در مقایسه با روشهای شناختهشده قبلی دارای دقت بالاتری است.
The steganalysis purpose is to prevent the pursuit of steganography methods for your goals. In steganography, in order to evaluate new ideas, there should be known steganalysis attacks on them, and the results should be compared with other existing methods. One of the most well-known steganalysis methods is CDF method that used in this research. One of the major challenges in the image steganalysis issue is the large number of extracted features. High-dimensional data sets from two directions reduce steganalysis performance. On the one hand, with the increase in the dimensions of the data, the volume of computing increases, and on the other hand, a model based on high-dimensional data has a low generalization capability and increases probability of overfitting. As a result, reducing the dimensions of the problem can both reduce the computational complexity and improve the steganalysis performance. In this paper, has been tried to combine the concept of the maximum weighted clique problem and edge centrality measure, and to consider the suitability of each feature, to select the most effective features with minimum redundancy as the final features. The simulation results on the SPAM and CC-PEV data showed that the proposed method had a good performance and accurately obtained about 96% in the detection of data embedding in the images, and this method is more accurate than the previously known methods.