کنترل دوحلقهای اینورتر 400 هرتز برای کاربرد منابع تغذیه زمینی
محورهای موضوعی : مهندسی برق و کامپیوترمحمود نوری 1 , حسین ایمانعینی 2
1 - دانشگاه تهران
2 - دانشگاه تهران
کلید واژه: اينورتر 400 هرتز طراحي ديجيتال ترکيبي کنترل دوحلقهاي کنترل,
چکیده مقاله :
در این مقاله روش کنترل دوحلقهاي براي کنترل اينورتر 400 هرتز معرفی میشود. در حلقه بیرونی از کنترلکنندههاي تشدیدی برای تنظیم دامنه هارمونیک اصلی و حذف هارمونیکهای نامطلوب ولتاژ استفاده میشود. در حلقه داخلی براي پرهيز از ايجاد تأخير فاز و کاهش پهناي باند از کنترلکننده تناسبي جریان بهره گرفته شده است. در این مقاله برای طراحی ضرايب کنترلکنندههاي حلقههاي داخلي و خارجي، روش ديجيتال ترکيبي در حوزه زمان- گسسته و زمان- پيوسته پیشنهاد شده است. به منظور مجزاسازي سيستم کنترل از ورودي اغتشاش جريان بار و بهبود پاسخ ديناميکي سيستم، بلوک پيشخور به ساختار کنترل دوحلقهاي افزوده شده است. برای پیادهسازی ایمن در برابر نویز بلوک پیشخور، یک مشتقگیر نرم معرفی شده است که به صورت بهینه برای فرکانس 400 هرتز طراحی شده است. شبيهسازيهاي متعددي به منظور تأييد کارايي سيستم کنترل انجام شده که بيانگر عملکرد مطلوب حالت گذرا و ماندگار سيستم است. در انتها نتايج عملي به دست آمده از يک نمونه آزمايشگاهي- صنعتيkVA 20 و مبتنی بر سیستم کنترل دوحلقهای ارائه میشود.
In this paper dual-loop control method is proposed for control of 400 Hz inverter. Resonant controllers are used in the outer loop to regulate the amplitude of fundamental harmonic and to remove the unwanted harmonics. To avoid phase delay and bandwidth degradation, proportional controller is used as the inner control loop. In this paper, hybrid digital design in discrete- and continuous-time domain is introduced to design the inner and outer control loops. To decouple the control system from the load current disturbances and to improve the dynamic performance, a feed-forward path is added to the dual-loop control structure. To reduce the noise of feed-forward path, a soft-derivative term is introduced which is optimized for 400 Hz frequency. To verify the system performance, several simulations have been carried out which shows satisfactory results under dynamic and steady state conditions. Finally, the experimental results of a 20 kVA hardware prototype is presented to confirm the validity of theoretical and simulation results.