روش جديد آسيبشناسي تودهها در تصاوير ماموگرافي به كمک ترکیب ويژگيهاي منطبق بر استاندارد BI - RADS و كلاسهبندي كننده مبتني بر تضاد
محورهای موضوعی : مهندسی برق و کامپیوترفاطمه ساکی 1 , امیر طهماسبی 2 , شهریار برادران شکوهی 3
1 - دانشگاه علم و صنعت ايران
2 - دانشگاه علم و صنعت ايران
3 - مهندسی برق
کلید واژه: استخراج ويژگي استاندارد BI-RADS سيستم CADx کلاسهبندی کننده مبتنی بر تضاد ماموگرافي,
چکیده مقاله :
تفكيك تودههاي خوشخيم و بدخيم در ماموگرامهاي ديجيتالي يكي از مراحل بسيار مهم تشخيص زودهنگام سرطان سينه است، چرا كه ميتواند تا حد زيادي شانس بقاي بيمار را افزايش دهد. در اين مقاله يك سيستم CADx نوين با بهکارگيري کلاسهبندي کننده جديد مبتني بر تضاد (OWBP) جهت آسيبشناسي تودهها در تصاوير ماموگرافي معرفي خواهد شد. هدف، بهبود عملکرد و سرعت يادگيري الگوريتمهاي CADx با استفاده از ترکيب ويژگيهاي منطبق بر استاندارد BI-RADS و كلاسهبندي كننده پيشنهادي ميباشد. ورودي سيستم يک ROI بوده که حاوي يک توده مشکوک است. اين ناحيه ابتدا تحت پيشپردازشهايي قرار گرفته، سپس 12 ويژگي که توصيفکنندههاي مناسبي از شکل، مرز و چگالي توده هستند، استخراج ميشوند. منحنی ROC و عملكرد آسيبشناسي حاصل از ترکيب تمام اين ويژگيها توسط دو کلاسهبندي کننده با يادگيري متداول پسانتشار و يادگيري پيشنهادي OWBP ارزيابي شده و سيستمهاي حاصل از لحاظ سرعت يادگيري نیز مورد مقايسه قرار گرفتهاند. همچنین در اين تحقيق قابليت آسيبشناسي هر گروه از ويژگيهاي شكل، مرز و چگالي بهطور جداگانه بررسي شده است. پايگاه داده مورد استفاده در اين تحقيق MIAS است. سيستم نهايي پیشنهادی داراي Az 924/0، با سرعت يادگيري تقريباً 4 برابر سرعت يادگيري سيستم با کلاسهبندي کننده پسانتشار و همچنين عملکرد 86/92% ميباشد.
Fast and accurate classification of benign and malignant patterns in digital mammograms is of significant importance in the diagnosis of breast cancers. In this paper, we develop a new Computer-aided Diagnosis (CADx) system using a novel Opposition-based classifier to enhance the accuracy and shorten the training time of the classification of breast masses. We extract a group of Breast Imaging-Reporting and Data System (BI-RADS) features from preprocessed mammography images and feed them to a Multi-Layer Perceptron (MLP). The MLP is then trained using a new learning rule which we will refer to as the Opposite Weighted Back Propagation (OWBP) algorithm. We evaluate the performance of the system, in terms of classification accuracy, using a Receiver Operational Characteristics (ROC) curve. The proposed system yields an area under ROC curve (Az) of 0.924 and an accuracy of 92.86 %. Furthermore, the speed analysis results suggest that, with the same network topology, the convergence rate of the proposed OWBP algorithm is almost 4 times faster than that of the traditional Back Propagation (BP) algorithm.