یک سیستم تشخیص نفوذ مبتنی بر یادگیری عمیق برای گذرگاه CAN
الموضوعات : ICT
1 - دانشگاه شیراز
2 - دانشگاه شیراز
الکلمات المفتاحية: سیستم تشخیص نفوذ, یادگیری ماشین, شبکه داخل خودرویی, شبکه ناحیه کنترل کننده (CAN), شبکه عصبی پیچشی (CNN), یادگیری خصمانه,
ملخص المقالة :
در سالهای اخیر، با پیشرفت الکترونیک خودرو و توسعه وسایل نقلیه مدرن با کمک سیستم های نهفته و تجهیزات قابل حمل، شبکه های درون-خودرویی مانند شبکه ناحیه کنترل کننده (CAN) با مخاطرات امنیتی جدیدی مواجه شدهاند. از آنجا که گذرگاه CAN فاقد سیستم های امنیتی مانند تایید اعتبار و رمزگذاری برای مقابله با حملات سایبری میباشد، نیاز به یک سیستم تشخیص نفوذ برای شناسایی حملات به گذرگاه CAN بسیار ضرروی به نظر میرسد. در این مقاله، یک شبکه عصبی پیچیده متخاصم عمیق (DACNN) برای تشخیص انواع نفوذهای امنیتی در گذرگاههای CAN پیشنهاد شده است. به این منظور، روش DACNN که گسترش یافته روش CNN با استفاده از یادگیری خصمانه است، در سه مرحله به تشخیص نفوذ می پردازد؛ در مرحله نخست، CNN به عنوان توصیفگر ویژگی ها عمل نموده و ویژگیهای اصلی استخراج میشود و سپس، طبقه بندی کننده متمایزگر این ویژگیها را طبقهبندی می کند و در نهایت، به کمک یادگیری خصمانه نفوذ تشخیص داده میشود. جهت بررسی کارآمدی روش پیشنهادی، یک مجموعه داده منبع باز واقعی مورد استفاده قرار گرفت که ترافیک شبکه CAN را بر روی یک وسیله نقلیه واقعی در حین انجام حملات تزریق پیام ضبط نموده است. نتایج به دست آمده نشان میدهد که روش پیشنهادی نسبت به سایر روشهای یادگیری ماشین در نرخ منفی کاذب و میزان خطا عملکرد بهتری دارد که این میزان برای DoS و حمله جعل دنده محرک و حمله جعل RPM کمتر از 0.1 % می باشد و این میزان برای حمله فازی کمتر از 0.5% می باشد.