بهبود بارگذاری داده ها با در نظر گرفتن مقدار مصرف انرژی و تازگی اطلاعات در شبکه اینترنت اشیاء صنعتی با کمک الگوریتم ژنتیک تقویتی
الموضوعات : electrical and computer engineering
سیدابراهیم دشتی
1
,
فاطمه مؤیدی
2
,
عادل سالمی
3
1 - دانشکده برق و کامپیوتر، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران
2 - گروه مهندسی کامپیوتر، مجتمع آموزش عالی لارستان، لار، ایران
3 - دانشکده برق و کامپیوتر، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
الکلمات المفتاحية: بارگذاری, اینترنت اشیای صنعتی, الگوریتم ژنتیک, یادگیری تقویتی,
ملخص المقالة :
با افزایش روزافزون کاربرد اینترنت اشیا در زندگی روزمره و مخصوصاً صنعت، بهبود کارایی و زمان تأخیر با کمک بارگذاری دادهها یکی از اهداف این مسائل شده است. کنترل این عوامل باعث بهبود مصرف انرژی و استفاده طولانیتر از باتری اشیا خواهد شد. در این مقاله روشی برای بهبود پردازش دادههای حسگرها و محاسبات لبه و ابر در سیستمهای اینترنت اشیای صنعتی معرفی گردیده و معماری مطابق با دنیای واقعی در نظر گرفته شده است. در این معماری از سرورهای لبه با قابلیتهای محاسباتی در لبه شبکه به ویژه در ایستگاههای پایه استفاده میشود. درخواستهای حساس به تأخیر میتوانند از طریق کانالهای بیسیم به سرورهای لبه نزدیک منتقل شوند؛ در نتیجه ترافیک در شبکه مرکزی و تأخیر انتقال داده کاربر را به ویژه برای برنامههای صنعتی با حجم داده زیاد کاهش دهد. هدف در اینترنت اشیای صنعتی، مدیریت منابع شبکه، انتقال محاسبات و کمینهسازی مصرف انرژی در دستگاههای اینترنت اشیا با تضمین تازگی دادههای حسگر است. محیط شبکه و کارهای ورودی متغیر با زمان هستند. در این مقاله محیط مسئله و محدودیتهای آن با فرمول بیان گردیده و این مسئله با استفاده از الگوریتم ژنتیک و یادگیری تقویتی پیشنهادی حل شده است. راه حل پیشنهادی سبب بهبود محیط پویای مسئله برای بارگذاری دادهها و کارها با در نظر گرفتن انرژی و انتقال محاسبات و دادهها با درنظرگیری تازگی آنها شده است. نتایج نشاندهنده بهبود متوسط 40 درصدی نسبت به روشهای قبلی میباشد.