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Abstract

This paper proposes a power allocation method based on particle swarm optimization (PSO) to enhance spectrum sensing
performance in downlink Non Orthogonal Multiple Access (NOMA) systems employing high-order Quadrature Amplitude
modulation (QAM) modulation for beyond 5G networks. By intelligently adjusting user power levels, the proposed approach
significantly improves detection reliability while maintaining stringent false alarm constraints, even under challenging low-
SNR conditions. The goal is to enhance spectrum sensing performance by maximizing the probability of detection (P4) while
maintaining a constrained probability of false alarm (Pr). Cyclostationary Feature Detection (CFD) and Matched Filter
Detection (MFD) techniques are applied to evaluate detection performance under varying Signal to noise ratio (SNR)
conditions. Simulation results demonstrate that the optimized framework not only strengthens detection performance
particularly for high order QAM but also enhances overall system responsiveness. Also CFD surpasses MFD in higher SNR
scenarios due to its ability to exploit cyclic features of modulated signals, which are preserved even in moderately noisy
environments. The integration of PSO further enhances system performance, offering a practical and scalable solution for
next-generation Internet of Things (IoT)-enabled spectrum sharing environments.

Keywords: Non Orthogonal Multiple Access (NOMA); Matched Filter Detection (MFD); CFD, PSO; Cognitive Radio
Networks (CRN); Next Generation Networks (NGN).

spectrum to be wasted. Assigning spectrum to unlicensed
users, frequently referred to as secondary users or SU, is

1- Introduction

The increase in the number of connected devices and the
rapid expansion of wireless services are creating an
unprecedented need for spectral resources, pushing
networks toward the capabilities envisioned for beyond
5G and 6G systems [1]. Because cognitive radio (CR)
technology allows for dynamic spectrum access and
opportunistic usage of unused frequency bands, it has
become a key paradigm to solve spectrum shortages [2].
NOMA has simultaneously become well-known as a
crucial method for enhancing spectral efficiency and
facilitating huge connections [3-4]. CR employs three
primary sensing methods to detect available spectrum:
Energy Detection (ED), Matched Filter Detection (MFD),
and Cyclostationary Feature Detection (CFD). It has been
found in recent surveys that over 75% of spectrum is
wasteful [4]. Therefore, it is crucial to make use of
unutilized spectrum. Primary users (PUs) possessing
license do not always use the allocated spectrum, causing
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one method of increasing spectrum utilization when PUs
are discovered to be inactive [5]. Simultaneously, the
spectrum ought to be redistributed to the PUs whenever
they choose to utilize it, without affecting the SU’s
performance [6]. This implies that SUs should use the
spectrum whether or not PUs are present. There is great
potential for attaining high data rates and effective
spectrum usage when CR and NOMA are combined,
especially when using high order modulation techniques
like 64-QAM and 256-QAM [7-8]. These benefits,
however, come at the expense of more complicated
spectrum sensing and a greater susceptibility to fading and
noise, particularly in the low signal-to-noise ratio (SNR)
conditions typical of CR situations [9]. For secondary
users to operate dependably in shared spectrum scenarios
and to prevent detrimental interference with primary
users, accurate spectrum sensing is necessary [10]. This
study addresses the central question of whether an
intelligent power allocation strategy can enhance
spectrum sensing performance in CR-enabled NOMA
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systems while maintaining strict constraints on false alarm
rates. We hypothesize that a Particle Swarm Optimization
(PSO)-based approach can dynamically allocate user
power in a manner that maximizes detection probability,
reduces sensing time, and maintains efficient spectrum
utilization even under challenging conditions.
Conventional sensing techniques, including CFD and
MFD, often exhibit degraded performance in low SNR
conditions, particularly when dealing with high-order
modulations [11-12]. Moreover, many existing studies
focus solely on detection algorithms without considering
adaptive resource allocation as part of the sensing
framework. Our work bridges this gap by integrating
PSO-based power optimization into the CR-NOMA
sensing process, offering a holistic solution that jointly
considers sensing accuracy and power efficiency. This
represents a substantial contribution toward enabling
practical, robust CR-NOMA implementations. The
motivation for this research lies in the growing demand
for agile and energy-efficient spectrum sharing techniques
capable of supporting high-throughput applications,
Internet of Things (IoT) deployments, and massive
machine-type communications. By optimizing power
allocation, we aim to achieve reliable detection
performance without excessive sensing overhead, paving
the way for practical deployment of cognitive radio
systems in next-generation networks. Motivated by the
need for improved detection in noisy NOMA-QAM
environments, this work proposes a PSO-based power
allocation framework to enhance spectrum sensing
performance. Key contributions include:

(1) Development of a PSO-optimized power allocation
scheme for NOMA systems with high-order QAM to
boost detection accuracy.

(i1) Comparative analysis of CFD and MFD for QAM-64
and QAM-256 modulation schemes.

(iii) Simulation results showing up to 47.91%
improvement in detection probability (Pd) over
conventional MFD, validating the approach in challenging
noise conditions.

This is how the rest of the paper is structured. Relevant
literature related to NOMA, QAM, MFD, CFD and PSO
is given in Section 2. The system model and the suggested
PSO-based optimization methodology are covered in
depth in Section 3. Simulation data, performance
comparisons, and information on the efficacy of the
suggested strategy are presented in Section 4. The paper's
conclusion and some future study directions are covered
in Section 5 and 6.

2- Literature Review

Lately, a number of research on spectrum

sensing techniques using NOMA have
demonstrated potential in fulfilling the spectrum needs of
several 5G applications. 5G mobile communications are
about to become worldwide. For an OFDM system, cyclic
prefix detection was proposed by Arun et al. [13]. The
recommended method's demand for previous knowledge
from the principal user is one of its key drawbacks. The
energy detection method of SS for OFDM system was
implemented by the authors [14]. The simulation results
show that while OFDM without CP performs better
towards Py, OFDM system consisting of CP shows
improved throughput performance. Recent studies further
extended the applicability of NOMA-based cognitive
systems [21-22]. Recent advancements in spectrum
sharing and NOMA integration have focused on
intelligent resource allocation and IRS-assisted systems to
enhance performance in Beyond 5G networks [25-26].
Additionally, Bala Kumar and Nanda Kumar [28]
explored block chain-enabled cooperative spectrum
sensing in MIMO-NOMA CRNs for improved security
and sensing accuracy. For instance, Salameh et al. [29]
feature-based spectrum sensing to adaptively detect
primary user signals in fading channels without requiring
a fixed detection threshold while Zhai et al. [30] proposed
a joint optimization scheme combining active IRS and
multicluster NOMA to improve spectral efficiency. These
works underscore a growing trend toward intelligent,
adaptive spectrum management strategies. However, most
of these approaches either focus on physical-layer
improvements or overlook sensing complexity under
high-order modulation and low-SNR conditions. In
contrast, this study addresses the need for efficient
spectrum sensing by integrating PSO-based power
allocation with advanced detection techniques in high-
QAM NOMA-CR systems. Detailed literature specifically
for NOMA-QAM systems is given in Table 1.
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Table 1 :- Literature Review relevant to proposed Work

. Implementation and analysis done
1 [15] 2010 Implement and examine a MIMO-OFDM system using MATLAB simulations
3 dB gain with optimized NOMA
3 [4] 2019 Enhance sensor performance at low SNR over O-NOMA
Explore advanced spectral efficiency techniques in CRNs NOMA-CRN Ou.tperforms
4 [1] 2019 . . conventional CR in spectrum
using NOMA and 5G signals. -
efficiency
To Integrate NOMA into CR networks to enhance spectrum High SE and large user support
5 [3] 2020 . . B
efficiency and accommodate large number of users shown in CR scenarios
Allows SU to use several PU
6 [22] 2021 Use NOMA to efficiently utilize the spectrum types with and without
interference
To Assess the effectiveness of NOMA in uplink Weak user power bO(.)St 1mproves
7 [24] 2021 s . - performance, especially at low
communications using fixed power coefficients. SNRs
8 [27] 2021 Apply Swarm Intelligence to address future network issues ST types clas51ﬁed;.c.h alle.nges and
research opportunities discussed
Cyclostationary methods show 2
9 [26] 2022 Detailed review of 5G waveforms using sensing methods dB advantage over traditional
techniques
Demonstrated enhanced security
Introduce block chain-enabled cooperative and reliability in spectrum sensing
10 [28] 2024 spectrum sensing for 5G/B5G CR using using decentralized block chain
massive MIMO-NOMA mechanisms in MIMO-NOMA
CRNS.
Method Employs feature-based
Machine learning-driven, feature-based spectrum sensing spectrum sensing to adaptively
11 [29] 2025 approach to improve NOMA signal detection in dynamic IoT detect primary user signals in
networks operating under fading channels. fading channels without requiring
a fixed detection threshold.

2-1- Research Gap and Motivation

Despite the extensive efforts to enhance spectrum
efficiency using CR and NOMA techniques, several
challenges remain unaddressed. Most of the prior works
focus on static or suboptimal power allocation strategies,
often overlooking the impact of dynamic power tuning
under high-order modulation schemes. Furthermore, few
studies have explored the integration of advanced
optimization algorithms such as swarm intelligence for
real-time adaptation in CR-NOMA environments under
low-SNR conditions. Additionally, limited work has been
done to jointly optimize sensing accuracy and power
distribution while accounting for false alarm constraints in
high-QAM signal environments. As a result, a critical gap
persists in developing unified frameworks that can
adaptively optimize both detection performance and

spectral efficiency in practical CR scenarios. Motivated
by this gap, the present study proposes a novel power
allocation framework based on Particle Swarm
Optimization (PSO), tailored for CR-enabled NOMA
systems operating under high-order QAM. The approach
aims to achieve enhanced sensing accuracy, reduced false
alarm rates, and optimized throughput, all while
maintaining practical feasibility for next-generation
wireless systems.

3- Proposed System Model

This work investigates a downlink NOMA-based
communication system utilizing QAM modulation for
Beyond 5G scenarios. Multiple users are multiplexed in
the power domain and served concurrently over a shared
channel. Power levels for each user are dynamically
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allocated using Particle Swarm Optimization (PSO) to
enhance overall detection performance while maintaining
user fairness. At the receiver, spectrum sensing is carried

Pr < 0.5. These methods help the CR identify when the
spectrum is idle based on two hypotheses: H1(primary
user presence) and HO(absence of a primary user).

out using both CFD and MFD, with performance
evaluated across different SNR values for QAM-64 and
QAM-256 schemes. The PSO algorithm optimizes power
allocation by maximizing the P4 under a constraint on the

Table 2.Comparison between traditional and proposed sensing technique

S. No. Spectrum Sensing Remarks
Technique
1 Conventional Energy Simple to implement with low computational complexity.
Detection Poor performance at low SNR (P4= 0 at SNR < -12 dB).

Susceptible to interference be- tween PUs and SUs.

Robust detection at low SNR (Requires prior knowledge of signal periodicity).
Moderate computational complexity due to autocorrelation.

Effective at low SNR (Pa4=0.19 at SNR = 4 dB for QAM-256).

IRequires prior knowledge of PU signal.

SUs can only use spectrum in absence of PUs.

4 Proposed Optimized MFD | High Pa (0.83 at Pr = 0.5 for QAM-256, 47.91% improvement over MFD).
& CFD Robust at low SNR (Pa=0.79 at SNR = -5 dB).

Increased computational complexity due to PSO optimization.

2 Conventional CFD

3 Conventional MFD

{ HO : Xj(®) = Nj(®) } 0

H1: Xj(t) = hjS(t) + Nj(©), j= 1,.........Nu 3-1- Matched Filter Detection

The fitness function is defined as:

F(P) = Pq(P) — A max (0, P (P) — 0.5) ) The MFD technique evaluates whether primary users are

where P is the power allocation vector, lambda is a
penalty factor, and P4(P) and P«(P) are computed based on
the NOMA-QAM system model. Although PSO is a
widely  established optimization technique, its
characteristics make it particularly suitable for power
allocation in dynamic CR-NOMA environments. PSO
efficiently  handles  multi-objective,  non-convex
optimization problems without requiring gradient
information, which is especially important under real-
time, non-linear, and noisy conditions typical of cognitive
radio systems. Moreover, PSO’s low computational cost
and adaptability enable quick convergence in
environments where SNR and user demands fluctuate.
This makes PSO a practical and effective choice for
simultaneously optimizing detection probability and
power distribution in high-QAM scenarios. The novelty
of this work lies in embedding PSO within a joint
spectrum sensing and power allocation framework, where
the optimization process is directly influenced by
detection metrics (P4 and Py). This unique application is
further distinguished by its evaluation under high-QAM
and CFD/MFD trade-offs. Comparison of proposed model
with benchmarking techniques is given in Table 2.

present by comparing the detected signal with a reference
signal. The next step involves comparing the output with
a dynamic threshold. It is extremely effective in low SNR
since it optimizes SNR in presence of AWGN. The
formula for the test statistic is TMF = Yy (n)*x (n). The
PU signal in this case is represented by (x), the SU signal
by (n), and the test parameter for MFD is TMF. It then
compares a threshold with the test statistics (TMF) to
ascertain availability of spectrum. The signal received
from Secondary and Primary user are roughly modeled as
random Gaussian variables as depicted in fig. (1).

Random Data SP IFFT Filters and SC PIS
Generator Converter Converter

Rayleigh
Channel

SP Filters and SC FIT PIS Refei\'ed
Converter Converter Signal

Detection (if R1
>= Threshold) Threshold

Figure 1. Block diagram for NOMA MFD
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3-2- Cyclostationary Feature Detection

CFD is amongst the most significant technique for
advanced as it is able to identify the spectrum at low SNR
without the impact of noise. It uses signal's periodicity
features as it calculates mean and autocorrelation of the
signal. The spectrum correlation density functions and
cyclic autocorrelation are useful in order to estimate the
CS signals. The initial stage in CS is to use a number of
procedures, including filtering, encoding, and sampling,
to convert the signal into second-order CS.
()} =y (t+to)} 3)

The (r) is represented as cyclic auto-correlation

function at:

By = {M/To} “)

Random =i P {1 SC et PSS

Signals

Received FFT === SIC e Filters Channel
Signal

Cyclostationary
Feature
detection

Figure 2. Block diagram for NOMA CFD

In a NOMA system, each subcarrier's power spectrum
density (PSD) can be characterized. For n-th subcarrier,
PSD can be represented as:

on(f) = PnTs (Sl;:; STS)Z %)

where, T; stands for the symbol duration, ¢ is the PSD of
the next subcarrier, and P, is transmit power that is

released by preceding subcarrier. A possible technique to
represent CFD using NOMA is as

on(f) = [Hn(f)I? (6)

The prototype filter's frequency spectrum with coefficient
h[n] and n = 0, 1... W-1 is represented as Hy(f) [6]. An
example of a frequency response's source is:

|Hn(H)|=h[Y] +2Z7llh[(¥) eos2M) ()

The following formula determines the phase angle:

Ph(u) = [so%,s1%,s2" ... ... sl — 1Y] (8)
foru=1, 2...U
Si = exp (jog ) ©)

j=0, 1, L-1, and where jegu) denotes random phase angle.
So the representation of NOMA symbol can be shown as:
Yi = [Yior Yiex wor voe vve eve wee vee vee e iy 1] (10)

The phase angle is applied to the NOMA symbols as
follows:

Y, ® = p® «y, (11)
. TP u
Y O=2Eb Bl Xy h(t- e T oK T+ B difht
KT, 2.
e T KT (12)

Lastly, the following represents the received NOMA
signal:

Y (O=Xfzd xImidelokt p(t — kRo)  (13)

We can infer from Eq. (13) that the NOMA - CR system
is capacious than traditional OFDM system. The block
diagram of the recommended technique is displayed in
Fig. 2. A sequential generation process generates a
random parallel symbol. IFFT is used to examine the
signal in the time domain, and once it has been transmitted
across a Rayleigh channel, SC permits many users to use
the sub-channel. The receiver uses SIC to decode the time
domain signal and FFT to translate it to the frequency
domain. In the end, a threshold is determined and if
received symbol's energy exceeds the threshold value,
identification will occur; otherwise, no detection will be
taken into account.
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Create a population of Particles

I

Each particle represents a power allocation vector
across NOMA users under sensing constraints

%

Initialize positions & velocity randomly

!

Calculate fitness for each particle ( Fitness is based
on optimization of Ps Prand threshold for each
power allocation under M-QAM CFD and MFD)

Is current fitness better
than perzonal best?

Update global best (Best among all particles)

¥

Adjust power levels & sensing thresholds for
the next iteration

)

Check stopping condition

¥

Max iteration reached or convergence in
Py Py threshold

Figure 3. Flowchart of MFD and CFD Technique using PSO

4- Simulation Parameters and Performance
Analysis.

In an effort to implement the suggested algorithm shown in
Fig. 3 MATLAB 2022 is used. Table 3. depicts the
simulation parameters for optimizing and analyzing NOMA
QAM CFD and MFD using PSO. Simulation results of
matched  filter  spectrum  sensing method and
Cyclostationary feature detection based on NOMA are used
to comprehensively examine the results. This study
determines the threshold value at the NOMA system's
receiver end.

Table 3. Simulation Parameters

Parameters Description Values
f frequency 16 MHz
M QAM order 64,256
BW Bandwidth 30 MHz
N Number of users 50
n Population size 100
SNR Signal to noise ratio -20dBto 5 dB
k FFT Size 1024

It is based on the idea that only detection will be presumed
if the signal received equals or exceeds the threshold value;
otherwise, no detection will be inferred. When assessing the
effectiveness of MFD and CFD, a constant threshold value
is taken into account because a changing threshold can
deteriorate the efficiency of spectrum sensing methods. To

261
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investigate the role of thresholds in MFD and CFD
identification, QAM-64 and QAM-256 transmission
systems with 64 and 256 sub-carries were used. Table 4 and
Figure 4 display the Pq4 for various Prvalues. Prindicates the
false representation of noise as a desired signal. SNR =10
dB was fixed in the current simulation to analyze the
effectiveness of MFD & CFD strategy for NOMA. It is seen
from fig.4 and table 4 that NOMA M-256 Py is higher than
M-64. So it is inferred that NOMA-QAM-MFD 256 Pd is
better than QAM-64 as shown in fig (4).

" ROC for Different QAM Orders
—&—M =64
09 —o—M =256 ‘,"
08
0.7 {
06 /
Q.O 05 & ¢
04
03
2
0.2
0.1 . : :'_‘:/
. > S
otesceSE e oo o—o—a—" . . . . .
0 01t 02 03 04 05 06 07 08 09 1
Pe
Figure 4: P4 Vs Pt for M-QAM MFD
Table 4: NOMA-QAM MFD Py vs P result
Pi/Pq 01 | 02 | 03 | 04 | 06 | 07 | 08 | 09 1
(MFD)
NOMA | 0 0 0 | 007 | 014 | 027 | 047 | 076 | 1
M-256
NOMA | 0 0 0 | 005 | 009 | 0.18 | 033 | 036 | 1
M-64

Cyclostationary Feature Detection (CFD): F‘d vs Pf for NOMA QAM Schemes
1

09

0.8

07r

06

0.5

04

0.3

Probability of Detection (Pd)

02r

0.1 1" —6— NOMA QAM-256
—E— NOMA QAM-64

0
0 005 01 015 02 025 03 035 04 045 05

Probability of False Alarm (Pf)
Figure.5. P4 Vs Pt for CFD for M-QAM.

Table 5: P4 vs Pr for NOMA-QAM using CFD

Pr /Pq | 0.01 0.11 | 022 | 028 | 033 | 039 | 0.44 | 050
(CFD)
NOMA | 022 046 | 059 | 061 | 0.66 | 0.69 | 0.73 | 0.76
QAM-
256
NOMA | 0.12 032 | 045 | 051 | 056 | 0.60 | 0.65 | 0.68
QAM-
64

Table 5 and Figure 5 shows the Pd vs Pf values for M-QAM
CFD. A comparative analysis demonstrates the clear
advantage of the proposed NOMA-CFD approach over
MFD. At Pf= 0.5 and SNR = 10 dB, CFD with QAM-256
achieves a Pd of 0.76, outperforming both QAM-64 (Pd =
0.68) and MFD, with an observed 44.28% improvement in
detection probability. Across the full range of Pf values,
CFD consistently maintains higher Pd, indicating superior
sensing reliability and robustness to false alarms compared
to conventional techniques.

Matched Filter Detection (MFD): Pd vs SNR for NOMA M-QAM scheme

0.9 [

0.8 -

0.7 |-

0.6

0.5

0.4

0.3

Probability of Detection (Pd)

0.2

01k —6—NOMA M-256 | |
—E— NOMA M-64
‘

o . . !
-20 -15 -10 -5 0 5 10 15

SNR (dB)
Figure 6. Plot for MFD Pq4 against SNR.

Table 6. P4 against SNR for MFD in NOMA-QAM
SNR/Pd | - - -12 -8 -4 0 4 (8 |12 ] 16
(MFD) | 20 | 16
NOMA 0 0 0 0 0.19 | 0965 | 1 1 1 1
M-256
NOMA 0 0 0.004 | 0.02 | 0.14 | 0.66 1 1 1 1
M-64

The Pd is displayed as a function of SNR in Table 6 and
Fig.6. We do analysis and simulations across a variety of
SNR values (10 dB to 20 dB) for MFD. For QAM-64 &
256, 100% Probability of detection (Pd) is achieved at 4 dB
and 6 dB, respectively. Therefore, QAM-Pd can be
considered better than QAM-256. For instance, at SNR = —
10 dB, MFD yields a Pd of 0.56 (QAM-256), while CFD
fails to detect (Pd = 0). However, at SNR = 4 dB, CFD
rapidly improves to Pd = 1.0, outperforming MFD’s Pd of
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0.97. This demonstrates CFD’s steeper gain in detection
performance once the SNR threshold is crossed.

Table 6 and Figure 6 shows the Pd for various Pf values.
SNR = 10 dB was fixed in the current simulation to measure
the effectiveness of the CFD strategy for NOMA. It is seen
that for NOMA QAM CFD Pd value is 0.76 for Pf of 0.50
as compared to 0.68 Pd value for NOMA QAM-64. Also

Table7.P4 vs SNR for NOMA-QAM with CFD.

SNR(AB)YP | 25 | -20 | -15 | -10 5 |o +5
d

NOMA 01 |01 |03 |05 07 |09 |1
QAM-256 1 6 3 6 9 7

NOMA 01 |01 [03 |05 07 |09 |09
QAM-64 0 5 0 0 4 1 8

Table 8. BER vs SNR of NOMA-QAM MFD & CFD
P; /Py 00 (00 01 [0O1 [02 |02 03 ]04]05
1 6 5 5 0
Optimiz | 03 | 03 | 03 [ 04 | 04 | 04 [ 04 | 04 | 04
ed Pgof | 3 7 9 0 2 3 5 7 9
MFD
Optimiz | 0.5 [ 05 [ 06 | 0.7 | 0.7 | 0.7 | 0.7 | 0.8 | 0.8
ed Pgof | 1 9 3 0 3 5 9 1 3
CFD

results improve by 44.28% when compared with MFD
technique. The figure illustrates that NOMA-QAM-256 Py
is better than QAM-64. Also it is clear from results that
NOMA-CFD outperforms the results of MFD.

Pd vs SNR for NOMA QAM-256 and QAM-64

09r

081

071

06

05

04r

Probability of Detection (Pd)

03r

02r

0.1 —8— NOMA QAM-256
—&— NOMA QAM-64

-25 -20 -15 -10 -5 0 5
SNR (dB)

Figure.7. Pa Vs SNR for CFD.

The table 7 and Fig. 7 depicts results of Pq vs SNR of
NOMA-QAM CFD. We examine and model P4 throughout
a spectrum of SNR ranging from -25 to 5dB. From obtained
results it is evident that at 0 dB and 5dB in the case of QAM-
64 and QAM-256, P4 reaches an ideal value of 100%.Thus,
it may be said that QAM- 64 Pd is superior to QAM-
256's.The superior low-SNR performance of MFD is due to
its reliance on known signal templates. In contrast, CFD
requires stronger signals to detect Cyclostationary features
but eventually surpasses MFD in higher-SNR regions,

making it better suited for mid-to-high-SNR cognitive
environments.

BER vs SNR for CFD and MFD

O.Sc’

o
s

o
w

Bit Error Rate (BER)
o
n

0.1

0

0 ‘2 J-':L f; Eli 1‘0 12
SNR (dB)
Figure 8. BER vs SNR of NOMA-QAM MFD & CFD

As SNR increases, the BER lowers, as Fig. 8 and Table 8
demonstrate. For M-256, a BER of 0.309 is obtained at 6
dB using the MFD technique and 0.212 at 12 dB using the
CFD technique. Matched Filter Detection MFD
consistently achieves lower BER compared to CFD across
all SNR levels due to its reliance on known signal patterns.
CFD shows limited improvement at low SNR but performs
better as SNR increases beyond 10 dB. Overall, MFD is
more reliable for low-SNR environments, while CFD
requires stronger signals to reduce errors.

Figure 8 reinforces these findings, showing that MFD
achieves a BER of 0.309 at 6 dB, while CFD only achieves
0.212 at 12 dB. This indicates that while MFD offers lower
BER in noisy environments, CFD benefits more from clean
conditions. As observed in Tables 5 and 7, P4 increases with
SNR for both MFD and CFD. Notably, MFD achieves a Pq4
of 0.97 at 0 dB for QAM-256, while CFD reaches similar
performance only at higher SNR levels (>4 dB). This
indicates that MFD is more suitable for low-SNR
environments due to its coherent detection mechanism.
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Optimized MFD vs CFD: P‘:I vs Pf
1 : : . . .
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- ‘/—M—M—_’—e’—"
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—&— Optimized CFD

0

0 005 01 015 02 025 03 035 04 045 05
Probability of False Alarm (F'f)

Figure 9. Optimized P4 using MFD and CFD using PSO

Table 9. P;against optimized P4 using PSO for CFD in NOMA-QAM
BER
of
CFD | 0484 | 0491 | 0493 | 0.495 | 0.496 | 0.312 | 0.212
BER
of
MFD | 0.39 0.37 0.339 | 0.309 | 0.272 | 0.237 | 0.199
SNR | 0 2 4 6 8 10 12

Table 9 and Fig. 9 shows PSO-optimized Pd vs Pf plot using
PSO in MFD and CFD technique. Results improved and
high value of P4 was achieved for lesser Pr values showing
improved detection performance (Pd of 0.75) at reduced
false alarm rates (Pr of 0.33). At Py = 0.3, PSO-optimized
CFD achieves P4 = 0.79, which translates to a 35% increase
in successful PU detection compared to MFD. This is
critical in CR-IoT applications where minimizing missed
detection reduces interference and improves network
reliability. CFD surpasses MFD in higher SNR scenarios
due to its ability to exploit cyclic features of modulated
signals, which are preserved even in moderately noisy
environments. The integration of PSO further enhances
detection performance by adaptively selecting parameters
that maximize Py under false alarm constraints. Despite its
superior performance, CFD exhibits higher computational
complexity compared to MFD, making it less suitable for
real-time or resource-constrained IoT nodes. Additionally,
PSO requires tuning and incurs optimization overhead,
which may limit deployment in ultra-low-latency scenarios.

5- Conclusion

This study introduces a PSO-optimized power allocation
framework for NOMA-QAM systems in cognitive radio
environments, targeting enhanced detection using CFD and
MFD techniques. The proposed model significantly

improves detection performance, particularly for high-order
modulation schemes like QAM-256, achieving up to
47.91% gain in Py over traditional MFD approaches. CFD
demonstrates superior robustness at low SNR and reduced
sensing time when optimized via PSO. These improvements
contribute to more reliable and energy-efficient spectrum
access, addressing the demands of IoT-enabled Beyond 5G
networks. Future work will explore integration with IRS-
assisted channels and deep learning-based sensing
optimization for dynamic environments.

6- Future Research Directions

Future research can extend the proposed PSO-based power
allocation framework to support advanced modulation
schemes like OFDM and OTFS. Incorporating adaptive
sensing techniques, such as machine learning-based
threshold selection or reinforcement learning, may further
enhance detection in dynamic environments. Additionally,
integrating Intelligent Reflecting Surfaces (IRS) to improve
signal quality and spectral efficiency, especially in
obstructed scenarios, is a promising direction. Finally,
validating the system's scalability in large-scale IoT
deployments and testing it on real-world platforms would
strengthen its practical relevance.
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