تشخیص احساسات مبتنی بر سیگنالهای EEG به کمک یادگیری عمیق مبتنی بر حافظه کوتاهمدت ماندگار دوجهته و مکانیسم توجه
الموضوعات : مهندسی برق و کامپیوترسیدعابد حسینی 1 , محبوبه هوشمند 2
1 - گروه مهندسی برق، دانشگاه آزاد اسلامی واحد مشهد، ایران
2 - گروه مهندسی کامپیوتر، دانشگاه آزاد اسلامی واحد مشهد، ایران
الکلمات المفتاحية: تشخیص احساس, حافظه کوتاهمدت ماندگار دوجهته, سیگنال مغزی, مکانیسم توجه, یادگیری عمیق,
ملخص المقالة :
این پژوهش به تشخیص احساسات از روی سیگنالهای EEG به کمک یادگیری عمیق مبتنی بر حافظه کوتاهمدت ماندگار (LSTM) دوجهته و مکانیسم توجه میپردازد. در این پژوهش از دو پایگاه داده SEED و DEAP برای تشخیص احساس استفاده شده است. داده SEED شامل سیگنالهای EEG در 62 کانال متعلق به 15 شرکتکننده در سه دسته مختلف از احساسات مثبت، خنثی و منفی است. داده DEAP شامل سیگنال EEG در 32 کانال متعلق به 32 شرکتکننده در دو دسته از ظرفیت و برانگیختگی است. LSTM کارایی خود را در استخراج اطلاعات زمانی از سیگنالهای فیزیولوژیکی طولانی نشان داده است. نوآوریهای این پژوهش شامل استفاده از یک تابع تلفات جدید و بهینهساز بیزین برای یافتن نرخ یادگیری اولیه است. صحت روش پیشنهادی برای طبقهبندی احساسات در پایگاه داده SEED 72/96 درصد شده است. صحت روش پیشنهادی برای طبقهبندی احساس در دو دسته ظرفیت و برانگیختگی در پایگاه داده DEAP بهترتیب 9/94 و 1/97 درصد است. نهایتاً مقایسه نتایج بهدستآمده با پژوهشهای اخیر روی دادههای یکسان، نشان از بهبود نسبتاً خوب روش پیشنهادی دارد.