بهبود مانيفولد حالات و تصاوير مجازی با بهکارگيری شبکههای عصبی دوسويه در بازشناسی چهره با يک تصوير از هر فرد
الموضوعات : electrical and computer engineeringفاطمه عبدالعلی 1 , سیدعلی سیدصالحی 2
1 - دانشگاه صنعتی اميرکبير
2 - دانشگاه صنعتی امیرکبیر
الکلمات المفتاحية: بازشناسی چهره يک تصوير از هر فرد شبکه عصبی بازگشتی پويايی جاذب يادگيری مانيفولد تصاوير مجازی پالايش غير خطی,
ملخص المقالة :
در اين مقاله بهمنظور توسعه عملکرد مدلهای شبکه عصبی در بازشناسی چهره با يک تصوير از هر فرد، يک ساختار شبکه عصبی دوسويه با الهام از نئوکورتکس مغز انسان ارائه شده است. در ساختار پيشنهادی همانند نئوکورتکس در ابتدا طی يک مرحله پردازش از پايين به بالا، يک تفسير زمخت از ورودی صورت میگيرد، سپس در مرحله بعد نتايج بازشناسی اوليه ضمن عبور از يک شبکه عصبی معکوس پالايش میشوند. از اين مدل جهت جداسازی غير خطی اطلاعات فرد از حالت و تخمين مانيفولدهای اطلاعات فرد و حالت استفاده شده است. بهمنظور افزايش تعداد نمونههای تعليم در شبکه طبقهبندی کننده با استفاده از مانيفولدهای تخمين زده شده، تصاوير مجازی چهرههای نرمال موجود در پايگاه داده تست توليد شده است. با تعليم شبکه طبقهبندی کننده توسط تصاوير مجازی حاصل از تعليم شبکه دوسويه، درصد صحت بازشناسی 45/85٪ روی دادگان تست حاصل شده که در مقايسه با توليد تصاوير مجازی با استفاده از روش خوشهبندی بدون سرپرستی اطلاعات افراد و حالات دارای بهبود 82/1٪ میباشد.